Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(1SR,2RS,5RS,6SR,8RS)-7,7-Dimethyltricyclo[6.2.1.0 ${ }^{1,6}$]undecane-2,5,6triol: a supramolecular framework built from $\mathrm{O}-\mathrm{H} \cdot \mathrm{O}$ hydrogen bonds

Swastik Mondal, ${ }^{\text {a }}$ Monika Mukherjee, ${ }^{\text {a* }}$ Arnab Roy, ${ }^{\text {b }}$ Debabrata Mukherjee ${ }^{\text {b }}$ and Madeleine Helliwell ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, ${ }^{\text {b }}$ Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, and ${ }^{\text {c Department of Chemistry, University of Manchester, Manchester M13 9PL, England }}$ Correspondence e-mail: sspmm@mahendra.iacs.res.in

Received 30 April 2002
Accepted 17 June 2002
Online 12 July 2002
In the title compound, $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$, the asymmetric unit has two independent molecules linked by a strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. The cyclohexane ring is trans fused to the cyclopentane ring bridged through an ethyl moiety. The hydroxyl groups act as donors as well as acceptors, resulting in an extensive two-dimensional hydrogen-bonded network in the (011) plane. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds between centrosymmetrically related molecules form a four-membered supramolecular assembly, leading to infinite chains parallel to the [01 $\overline{1}]$ direction, crosslinked in the [100] direction.

Comment

Khusimone, (I), a norsesquiterpene ketone containing a tricyclo[6.2.1.0 ${ }^{1,5}$]undecane skeleton, is one of the main olfactively important constituents of vetiver oil (Büchi et al., 1977). In connection with our studies directed towards the synthesis and characterization of bridged ring systems related to tricyclic sesquiterpenes (Das et al., 1996; Pati et al., 2000), the title tricyclic triol, (II), has been synthesized. This triol possesses the requisite structural features for a potential intermediate in a total synthesis of khusimone. The structure determination of (II) was undertaken in order to establish the relative stereochemistries of the five asymmetric centres (C 1 , $\mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 6$ and C8), and to devise the subsequent sequence of reactions leading to the total synthesis of (I).

Compound (II) consists of a cyclohexane ring trans fused to a cyclopentane ring bridged via an ethyl moiety. The asymmetric unit of (II) contains two crystallographically independent molecules, A and B (Fig. 1), with almost similar geometries. Equivalent bond distances and angles in the two molecules agree within experimental limits. In both molecules, the torsion angles (Table 1) about the $\mathrm{C} 2 A-\mathrm{C} 3 A, \mathrm{C} 4 A-$ $\mathrm{C} 5 A, \mathrm{C} 2 B-\mathrm{C} 3 B$ and $\mathrm{C} 4 B-\mathrm{C} 5 B$ bonds indicate the equa-
torial orientations of the two hydroxyl groups at the C2 and C5 positions, while the axial orientation of the OH group at the ring-junction C atom ($\mathrm{C} 6 A$ and $\mathrm{C} 6 B$) is evident from the torsion angles about the $\mathrm{C} 5 A-\mathrm{C} 6 A$ and $\mathrm{C} 5 B-\mathrm{C} 6 B$ bonds.

The two methyl groups at $C 7 A$ and $C 7 B$ are in almost synperiplanar and gauche orientations with respect to the C6A$\mathrm{O} 3 A$ and $\mathrm{C} 6 B-\mathrm{O} 3 B$ bonds $[\mathrm{O} 3 A-\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{C} 12 A$ -12.1 (3), $\mathrm{O} 3 B-\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{C} 12 B 14.5$ (3), $\mathrm{O} 3 A-\mathrm{C} 6 A-$ $\mathrm{C} 7 A-\mathrm{C} 13 A \quad-134.7(3)$ and $\mathrm{O} 3 B-\mathrm{O} 6 B-\mathrm{C} 7 B-\mathrm{C} 13 B$ 135.9 (2) ${ }^{\circ}$.

(I)

(II)

The $\mathrm{C}-\mathrm{C}[1.515$ (4)-1.596 (4) Å] and $\mathrm{C}-\mathrm{O}$ [1.433 (3)1.449 (3) A] bond distances agree well with the corresponding values reported in the literature (Allen et al., 1987). The lengthening of the $\mathrm{C}_{3} \mathrm{C}-\mathrm{CC}_{2} \mathrm{O}$ bond distances $[\mathrm{C} 6 A-\mathrm{C} 7 \mathrm{~A}$ 1.596 (4) \AA in molecule A and $\mathrm{C} 6 B-\mathrm{C} 7 B 1.589$ (4) \AA in molecule B] compared with other $\mathrm{C}-\mathrm{C}$ bond lengths (Table 1) is consistent with observations in related tricycloundecane structures (Pati et al., 2002).

The C1-C6 cyclohexane ring displays a chair conformation, with puckering parameters (Cremer \& Pople, 1975) $Q=$ $0.586(3) \AA, q_{2}=0.051(3) \AA, q_{3}=-0.584(3) \AA$ and $\theta=$ $175.1(3)^{\circ}$ for molecule A, and $Q=0.579(3) \AA, q_{2}=$ 0.060 (3) $\AA, q_{3}=0.576$ (3) \AA and $\theta=5.9(3)^{\circ}$ for molecule B. The cyclopentane ring ($\mathrm{C} 1 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 11$) adopts a nearenvelope conformation, with atom C 11 deviating by 0.877 (4) \AA in both molecules A and B from the least-squares plane through the remaining endocyclic atoms.

The dihedral angle between the planar parts of the fused cyclohexane and cyclopentane rings is $16.3(2)^{\circ}$ in molecule A and $18.2(1)^{\circ}$ in molecule B. The other five-membered ring $(\mathrm{C} 1 / \mathrm{C} 10 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 11)$, with ring puckering parameters $q_{2}=$ 0.606 (3) \AA and $\varphi=-43.4(3)^{\circ}$ for molecule A, and $q_{2}=$

Figure 1
A view of the structure of (II), with displacement ellipsoids at the 50% probability level, showing the two independent molecules connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions. H atoms are drawn as small spheres of arbitrary radii.
0.613 (3) \AA and $\varphi=136.4$ (3) ${ }^{\circ}$ for molecule B, also assumes a distorted envelope conformation, with atom C11 displaced from the ring plane by 0.884 (4) \AA in molecule A and 0.887 (4) \AA in molecule B. The molecule of (II) has five chiral centres ($\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 5, \mathrm{C} 6$ and C 8) and, from the centrosymmetric space group, it follows that the crystal is a racemate.

Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) influence the conformation of the two independent molecules of (II), A and B. In addition, each hydroxyl group in the molecule acts as a potential donor as well as an acceptor in an extensive intermolecular hydrogen-bond network. The resulting hydrogen-bonded supramolecular structure is of considerable complexity. A similar supramolecular network, solely controlled by hydrogen bonds between hydroxyl groups, has been reported by Deák et al. (2001).

A simplified description of the supramolecular assembly in (II), in terms of tetramolecular motifs leading to parallel chains and the connections between such chains, can be visualized as follows. The two molecules in the asymmetric unit, A and B, are linked via a strong $\mathrm{O} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 1 B(x, y$, z) hydrogen bond (Table 2 and Fig. 1). The intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the molecules in the asymmetric unit and their centrosymmetrically related counterparts, $\mathrm{O} 2 B-\mathrm{H} 2 B 1 \cdots \mathrm{O} 1 A(1-x, 1-y, 1-z)$, result in the formation of a four-membered $A_{2} B_{2}$ aggregate in the structure (Fig. 2). These supramolecular $A_{2} B_{2}$ units, connected through $\mathrm{O} 2 A-\mathrm{H} 2 A 1 \cdots \mathrm{O} 2 B(x, y-1,1+z)$ hydrogen bonds, give rise to infinite $\ldots A B A B \ldots$ chains parallel to the $[01 \overline{1}]$ direction (Fig. 3). These chains are interlinked by O3A$\mathrm{H} 3 A \cdots \mathrm{O} 2 A(2-x,-y, 2-z), \mathrm{O} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 3 B(2-x$, $1-y, 1-z)$ and $\mathrm{O} 3 B-\mathrm{H} 3 B \cdots \mathrm{O} 3 A(2-x, 1-y, 1-z)$ hydrogen bonds to complete the two-dimensional supramolecular network in the (011) plane.

Figure 2
The four-membered supramolecular aggregates of (II) [symmetry code: (i) $1-x, 1-y, 1-z]$. H atoms bonded to C atoms have been omitted for the sake of clarity.

Figure 3
A packing diagram for (II), viewed down the c axis. Hydrogen bonds are indicated by dotted lines. Atoms marked with a dollar sign (\$), hash (\#) or asterisk $\left(^{*}\right)$ are at the symmetry positions $(1-x, 1-y, 1-z),(x, y-1$, $1+z)$ and $(2-x, 1-y, 1-z)$, respectively. H atoms bonded to C atoms have been omitted for clarity.

Experimental

A solution of $(1 R S, 2 R S, 8 R S)$-2-hydroxy-7,7-dimethyltricyclo[6.2.1. $0^{1,6}$]undec-5-ene $(0.31 \mathrm{~g}, \quad 1.6 \mathrm{mmol})$ and $\mathrm{OsO}_{4}(0.41 \mathrm{~g}$, 1.6 mmol) in pyridine (6 ml) was stored at room temperature for 5 d . A saturated aqueous solution of sodium hydrogen sulfite (20 ml) was then added to the reaction mixture, and stirring was continued at room temperature for 3 h . Water (20 ml) was added and the product was extracted with ether. The ether extract was washed successively with dilute HCl and water, and then dried. The residue remaining upon evaporation of the solvent was crystallized from a mixture of ether and light petroleum (1:1) to furnish the title triol, (II) $(0.3 \mathrm{~g}$, 82%) (m.p. 451-453 K). Elemental analysis, calculated for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$, requires: C 68.99 , H 9.80\%; found: C 68.85 , H 9.92%.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{3}$
$M_{r}=226.31$
Triclinic, $P \overline{1}$
$a=9.812$ (2) \AA
$b=11.141$ (1) \AA
$c=11.443$ (2) \AA
$\alpha=82.47$ (1) ${ }^{\circ}$
$\beta=77.56(1)^{\circ}$
$\gamma=89.46(1)^{\circ}$
$V=1210.8(3) \AA^{3}$

Data collection

Rigaku AFC-5R diffractometer $\omega / 2 \theta$ scans
4499 measured reflections
4259 independent reflections
2972 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.015$
$\theta_{\text {max }}=25^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.156$
$S=1.10$
4259 reflections
299 parameters
H -atom parameters not refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0577 P)^{2}\right. \\
& \quad+0.9623 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.014 \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

